Telegram Group & Telegram Channel
🗨 Когда стоит рассматривать разбиение датасета вместо применения глобального преобразования

В тех случаях, когда в датасете присутствуют разные подгруппы с различными распределениями.

🔍 Пример:
Если есть данные о доходах из разных регионов. Один регион — с высоким уровнем доходов, другой — с низким. В совокупности распределение выглядит сильно смещённым или даже мультимодальным (несколько пиков).

В такой ситуации попытка применить глобальное преобразование (например, логарифм или Box-Cox) ко всему датасету сразу не устраняет проблему. Это всё ещё не одно распределение, а смесь разных.

Что делать:
📍 Разбить данные на логически обоснованные подгруппы (по региону, демографии, сегменту бизнеса и т.д.).
📍 Применить отдельные преобразования или даже обучить отдельные модели для каждой подгруппы.
📍 При необходимости объединить результаты анализа или прогнозы обратно.

Что важно учитывать:
📍 Разделение должно быть обосновано теоретически или доменной экспертизой. Разделение «наугад» может привести к переобучению или утечке информации.
📍 Объём данных в каждой подгруппе должен быть достаточным для построения статистически надёжных моделей или трансформаций.

Вывод:
Если данные представляют собой смешение разных источников или популяций, лучше работать с ними отдельно. Глобальные методы нормализации или преобразования могут маскировать настоящую структуру данных, а значит — вести к ошибочным выводам или неэффективным моделям.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/971
Create:
Last Update:

🗨 Когда стоит рассматривать разбиение датасета вместо применения глобального преобразования

В тех случаях, когда в датасете присутствуют разные подгруппы с различными распределениями.

🔍 Пример:
Если есть данные о доходах из разных регионов. Один регион — с высоким уровнем доходов, другой — с низким. В совокупности распределение выглядит сильно смещённым или даже мультимодальным (несколько пиков).

В такой ситуации попытка применить глобальное преобразование (например, логарифм или Box-Cox) ко всему датасету сразу не устраняет проблему. Это всё ещё не одно распределение, а смесь разных.

Что делать:
📍 Разбить данные на логически обоснованные подгруппы (по региону, демографии, сегменту бизнеса и т.д.).
📍 Применить отдельные преобразования или даже обучить отдельные модели для каждой подгруппы.
📍 При необходимости объединить результаты анализа или прогнозы обратно.

Что важно учитывать:
📍 Разделение должно быть обосновано теоретически или доменной экспертизой. Разделение «наугад» может привести к переобучению или утечке информации.
📍 Объём данных в каждой подгруппе должен быть достаточным для построения статистически надёжных моделей или трансформаций.

Вывод:
Если данные представляют собой смешение разных источников или популяций, лучше работать с ними отдельно. Глобальные методы нормализации или преобразования могут маскировать настоящую структуру данных, а значит — вести к ошибочным выводам или неэффективным моделям.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/971

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA